Project Steering Committee (PSC)

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter Keating</td>
<td>Chittenden County Regional Planning Commission</td>
</tr>
<tr>
<td>Justin Rabidoux</td>
<td>City of South Burlington</td>
</tr>
<tr>
<td>Paul Conner</td>
<td>City of South Burlington</td>
</tr>
<tr>
<td>Katelin Brewer-Cole</td>
<td>Local Motion</td>
</tr>
</tbody>
</table>

This scoping study was a collaborative effort of City of South Burlington staff, Chittenden County Regional Planning Commission, Local Motion, and Toole Design, who possessed a wealth of combined knowledge and expertise regarding project background, history, local insight, and existing conditions. Their valuable insight and assistance were instrumental in developing the implementation strategy.

The preparation of this report has been financed in part through grant from the Federal Highway Administration and Federal Transit Administration, U.S. Department of Transportation, under the State Planning and Research Program, Section 505 [or Metropolitan Planning Program, Section 104(f)] of Title 23, U.S. Code, as well as matching funds provided by Chittenden County’s municipalities and the Vermont Agency of Transportation. The contents of this report do not necessarily reflect the official views or policy of the U.S. Department of Transportation.
Table of Contents

Project Steering Committee (PSC) .. 3
Appendices .. 5

1.0 Introduction ... 6
 1.1 Background .. 6
 1.2 Project Study Area ... 6
 1.3 Project Oversight ... 8
 1.4 Project Purpose and Need .. 8
 1.4.1 Purpose ... 8
 1.4.2 Need .. 8

2.0 Existing Conditions ... 9
 2.1 Site Characteristics .. 9
 2.2 Relevant Plans and Studies ... 9
 2.3 Existing Resources ... 9
 2.4 Spear Street Existing Conditions .. 9
 2.4.1 Roadway Characteristics .. 9
 2.4.2 Land Use ... 10
 2.4.3 Natural Resources ... 10
 2.4.4 Built Environment ... 11
 2.4.5 Cultural Resources ... 19
 2.5 Hinesburg Road ... 19
 2.5.1 Roadway Characteristics .. 19
 2.5.2 Land Use ... 20
 2.5.3 Natural Resources ... 20
 2.5.4 Built Environment ... 21
 2.5.5 Cultural Resources ... 21
 2.6 Allen Road, Harbor View Road, and Baycrest Drive ... 27
 2.6.1 Roadway Characteristics .. 27
 2.6.2 Land Use ... 28
 2.6.3 Natural Resources ... 28
 2.6.4 Built Environment ... 28
 2.6.5 Cultural Resources ... 29
 2.7 Fayette Drive .. 35
 2.7.1 Roadway Characteristics .. 35
 2.7.2 Land Use ... 35
2.7.3 Natural Resources
2.7.4 Built Environment
2.7.5 Cultural Resources

3.0 Concept Alternatives Analysis

3.1 Spear Street
3.1.1 Evaluation of Concept Alternatives
3.1.2 Preferred Concept Alternative
3.1.3 Opinion of Probable Construction Costs
3.1.4 Evaluation Matrix

3.2 Hinesburg Road
3.2.1 Evaluation of Concept Alternatives
3.2.2 Preferred Concept Alternative
3.2.3 Opinion of Probable Construction Costs
3.2.4 Evaluation Matrix

3.3 Allen Road, Harbor View Road, and Baycrest Drive
3.3.1 Evaluation of Concept Alternatives
3.3.2 Preferred Concept Alternative
3.3.3 Opinion of Probable Construction Costs
3.3.4 Evaluation Matrix

3.4 Fayette Drive
3.4.1 Evaluation of Concept Alternatives
3.4.2 Reel Road Connection Options
3.4.3 Preferred Concept Alternative
3.4.4 Opinion of Probable Construction Costs
3.4.5 Evaluation Matrix

4.0 Project Summary
4.1 Conclusion

Appendices

Appendix A: South Burlington Planning Commission Meeting Minutes
Appendix B: Conceptual Alternatives and Typical Cross Sections
Appendix C: Construction Cost Estimates
Appendix D: Reel Road Connection Options
1.0 Introduction

1.1 Background
The Chittenden County Regional Planning Commission (CCRPC) and the City of South Burlington (City) initiated this scoping study to analyze and evaluate the feasibility of additional sidewalk and shared use paths at four (4) proposed study site locations:

- **Spear Street** from UVM George D. Aiken Forestry Sciences Laboratory to the town line of Shelburne, Vermont (approximately 2.6 miles)
- **Hinesburg Road** from Williston Road to Kennedy Drive (approximately 1 mile)
- **Allen Road** from Baycrest Drive to Shelburne Road, **Harbor View Road** from Shelburne Road to Baycrest Drive; and **Baycrest Drive** from Harbor View Road to Allen Road (approximately 1.3 miles)
- **Fayette Drive** from Queen City Park Road to Shelburne Road (approximately 4,500 feet, to be determined by alternative)

This report analyzes and evaluates existing conditions, provides conceptual alternatives, and tabulates opinions of probable construction costs. Preferred concept alternatives as identified with the Project Steering Committee (PSC), through the public participation and outreach during the scoping study process, are highlighted within this scoping study.

1.2 Project Study Area
The proposed project study area site locations are shown in Figure 1.
Figure 1: Project Study Area
1.3 Project Oversight

This scoping study project was conducted and coordinated with public involvement through workshops, presentations, and meetings with the steering committee and the South Burlington Planning Commission.

Project meetings and public involvement included the following:

- **Kickoff Meeting**: October 16, 2017 – Steering Committee Members and Toole Design staff met to discuss project scope, study area limits, and schedule.
- **Preliminary Alternatives Discussion**: May 3, 2018 – Steering Committee Members and Toole Design staff held a conference call to discuss design alternatives and to develop a purpose and need statement.
- **Working Group Conference Call**: July 17, 2018 – Steering Committee Members and Toole Design staff held a conference call to discuss design alternatives and the preparation needed for the Public Work Session.
- **Public Work Session**: July 25, 2018 – Toole Design staff presented the design plan alternatives to members of the public.
- **Project Team Conference Call**: October 9, 2018 – Steering Committee Members and Toole Design staff held a conference call to discuss comments received from the Public Work Session.

1.4 Project Purpose and Need

1.4.1 Purpose

The purpose of the South Burlington Pedestrian and Bicycle Feasibility Study is to provide analysis, evaluation, and recommendations for pedestrian and bicyclist facilities at the four (4) identified study areas in support of the City of South Burlington’s 2016 Comprehensive Plan, as enumerated below:

- **Goal**: Develop a safe and efficient transportation system that supports pedestrian, bicycle, and transit options while accommodating the automobile.
- **Objective 17**: Provide a transportation network that complies with Complete Street mandates and maximizes efficiency and safety for all types of users (pedestrians, cyclists, transit, automobiles, trucks, rail, and air).
- **Strategy 45**: Develop and build a City-wide sidewalk and recreation path plan that identifies and prioritizes gaps to link various neighborhood and community focal points.

1.4.2 Need

Specifically, this feasibility study is needed to:

- Create a preferred alternative for walking and bicycling through the Spear Street, Hinesburg Road, Allen Road, and Fayette Drive corridors within the identified study areas;
- Maximize safety and ease of use for current and future users walking and bicycling in these corridors;
- Support future connections in the City of South Burlington; and
- Provide an estimate of probable construction costs of the preferred alternatives to serve as a basis for the City to apply for funding grants.
2.0 Existing Conditions

2.1 Site Characteristics
All base mapping for this scoping study was compiled from Geographic Information System (GIS) and orthographic imagery data as available from the CCRPC, State of Vermont, and the City. No field survey was performed. Site fieldwork was conducted to field verify all topographic features within the project study area and subsequent fieldwork findings were added to the original base mapping.

2.2 Relevant Plans and Studies
The following documents were reviewed and consulted to ensure consistency with this scoping study:

- Chittenden County Regional Active Transportation Plan 2016
- South Burlington Parks Access Improvement Study 2014
- Chittenden County ECOS Plan 2013
- Champlain Path Feasibility Study: Charlotte to Burlington, Vermont 2004
- Spear Street Corridor Study 2004
- Champlain Parkway (draft) 2014
- PlanBTV South End (draft) 2015
- Walk Bike PlanBTV 2017

2.3 Existing Resources
The following sections provide a summary assessment of existing resources to understand potential impacts for concept alternatives. Each of the resource types specified in the VTrans Project Scoping Manual are addressed within each study location below. This section describes:

- Roadway Characteristics
- Land Use
- Natural Resources
- Built Environment
- Cultural Resources

The data referenced was obtained from the City of South Burlington, Vermont Center for Geographic Information, the Vermont Agency of Natural Resources, and VTrans Online Map Center.

2.4 Spear Street Existing Conditions
Spear Street is a Minor Arterial oriented north-south. This study covers a segment of Spear Street from the UVM George D. Aiken Forestry Sciences Laboratory at 705 Spear Street south to the Shelburne town line, a length of approximately 2.6 miles.

Spear Street features several notable topographic and scenic features. Starting at the northern end of the study area, Spear Street slopes down into the Potash Brook valley, passing under the Interstate 189 overpass, then slopes upwards and travels through a forested area. South of Swift Street, Spear Street follows a ridgeline with sweeping, scenic views of Lake Champlain and the Adirondack Mountains.

2.4.1 Roadway Characteristics
Spear Street is a two-lane roadway that carries two-way traffic. Refer to Table 1 for roadway characteristics of Spear Street. Additional lanes for turning traffic are provided at Swift Street, Olivia Drive, Nowland Farm Drive, and Allen Road. The typical travel lane width is 12 ft, however narrower travel lanes are used at some intersections. Parking is not permitted on Spear Street within the study area.
Walking facilities are generally not present on Spear Street except for a short sidewalk segment on the west side starting at Deerfield Road extending approximately 350 ft northward along the edge of Overlook Park. North of Swift Street, people walk on the 3-ft shoulders. South of Swift Street, a shoulder that is approximately 5 ft wide is provided on the west side of the roadway until the sidewalk at Overlook Park. After Overlook Park at Nowland Farm Road, the shoulder becomes a bike lane to the Shelburne town line and there are no walking facilities.

Conditions for bicycling vary along the length of the corridor. North of Swift Street marked shoulders are present but are too narrow (3 ft) to be considered a bicycle facility. From Swift Street to the Shelburne town line, a bike lane is provided in the southbound direction, while northbound bicycle and vehicle traffic share the same lane. At the Allen Road intersection, there are marked bike lanes for both directions on Spear Street extending approximately 490 ft from the intersection.

Table 1: Spear Street Roadway Characteristics (source: VTrans Route Log Data)

<table>
<thead>
<tr>
<th>Spear Street</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional classification</td>
</tr>
<tr>
<td>Length within study area</td>
</tr>
<tr>
<td>Jurisdiction</td>
</tr>
<tr>
<td>Right-of-way width (feet)</td>
</tr>
<tr>
<td>Roadway width (feet)</td>
</tr>
<tr>
<td>2016 AADT ,</td>
</tr>
<tr>
<td>Posted speed limit</td>
</tr>
</tbody>
</table>

*Approximate Right-of-Way **AADT= Average Annual Daily Traffic

Two signalized intersections are located in the study area at Swift Street and at Allen Road. Several stop-controlled intersections are located along Spear Street in which the minor approaches are stop-controlled.

2.4.2 Land Use

Land use along the Spear Street corridor consists low-density residential development, agricultural land, a city park, a church, and open space.

2.4.3 Natural Resources

Water Bodies, Wetlands, and Floodplains

Potash Brook, which meanders in an east to west direction through South Burlington, crosses Spear Street between the westbound and eastbound lanes of Interstate 189. It is classified as a Priority Stream/River. A tributary of Potash Brook runs roughly parallel to Spear Street on the east side, starting at Nowland Farm Road then crossing Spear Street near Swift Street. See Figure 2.

Near the northern end of the study area, there are wetlands classified as Significant in the Vermont Significant Wetland Inventory (VSWI) and as VSWI Advisory Wetlands. These features are near Potash Brook between the westbound and eastbound roadways of Interstate 189. A small VSWI significant wetland can also be found north of Pheasant Way on the west side of Spear Street. See Figure 2.

The study area contains a floodplain classified by the Federal Emergency Management Agency (FEMA) as a Special Flood Hazard Area. This area can be found near Potash Brook between the westbound and eastbound travel lanes of Interstate 189. See Figure 2.
Agricultural Lands or Soils
The study area includes Prime Agricultural Soils of Statewide Importance. See Figure 3. However, these areas are not likely to revert to agricultural uses.

Rare, Threatened, or Endangered Species
There are habitat blocks on the east and west sides of Spear Street just south of Interstate 189. An endangered species was observed (most recently in 1989) just east of Spear Street near the Shelburne town line. See Figure 4.

2.4.4 Built Environment
Utilities
The study area features numerous overhead and below-ground utilities. Utility poles are located along the length of Spear Street with varying setbacks from the edge of the paved roadway. A water line is located parallel to the roadway for the length of the study area except between Interstate 189 and Swift Street. Several water lines connect with the water line parallel to Swift Street. A gas line is located parallel to the roadway except on the portion north of Swift Street. Several sewer lines intersect with the Swift Street corridor. See Figure 5 and Figure 6.

Stormwater Management
Drainage in the study area is managed by a system of ditches, culverts, catch basins, and stormwater lines. Though numerous catch basins are located in the immediate vicinity of Spear Street, only one catch basin is actually located within the paved roadway approximately 300 ft north of Pinnacle Drive. Spear Street does not feature any curbs within the study area. See Figure 7 and Figure 8.

Hazardous Waste
Parcels within the study containing hazardous waste are located at 1855 Spear Street, 1431 Spear Street, and 1350 Spear Street. See Figure 7 and Figure 8.
Figure 2: Spear Street Wetlands
Figure 3: Spear Street Agricultural Lands or Soils
Figure 4: Spear Street Endangered Species
Figure 6: Spear Street Utilities (South)
Figure 7: Spear Street Drainage (North)
Figure 8: Spear Street Drainage (South)
2.4.5 Cultural Resources

Historic and Archeological

An Archeological Resource Assessment (ARA) was not conducted as part of this study because there are not considered to be any areas of historic or pre-contact sensitivity within or adjacent to the right-of-way.

Architectural

The building stock located within the study area consists primarily of single-family residential development.

Section 4(f) and 6(f) Properties

Section 4(f) properties include publicly-owned park and recreation areas, publicly-owned wildlife and waterfowl refuges, and publicly- or privately-owned historic sites. Historic sites include prehistoric and historic districts and sites, buildings, structures or objects listed in, or eligible for, the National Register of Historic Places.¹

Section 6(f) properties are properties acquired with Land and Water Conservation Act funds and coordinated with the Department of Interior. Usually replacement in kind is required.²

The following properties may be subject to Section 4(f) designation:

- 1400 Spear Street
- 1435 Spear Street
- Overlook Park (1575 Spear Street)

No properties were identified that may be subject to Section 6(f) designation.

2.5 Hinesburg Road

This study includes a segment of Hinesburg Road between Williston Road/U.S. Route 2 and Kennedy Drive. Hinesburg Road is relatively level topographically. Near the southern end of the study area, there is a downward slope into the Potash Brook valley, then back upwards on the approach to Kennedy Drive.

2.5.1 Roadway Characteristics

Hinesburg Road is a Principal Arterial that runs north-south. Refer to Table 2 for roadway characteristics of Hinesburg Road. Within the study area, it is signed as Vermont Route 116. Hinesburg Road is a two-lane roadway that carries two-way traffic. Refer to Table 2 for typical roadway characteristics. Additional lanes for turning traffic are provided at the Price Chopper driveway, Market Street, and Kennedy Drive. The typical cross section includes 11.5-ft travel lanes with 3- to 4-ft shoulders. Parked vehicles were noted on the northbound shoulder near Market Street during a field visit.

A sidewalk is located along the west side of the roadway for the entire length of Hinesburg Road within the study area. It has a typical width of 4.5 ft and is offset from the roadway by a 5-ft grass buffer. There is a sidewalk on the east side of the roadway starting at Kennedy Drive and extending northward to the 550 Hinesburg Road driveway. The Awasiwi Trail is a walking trail that parallels the Potash Brook and crosses Hinesburg Road near 550 Hinesburg Road.

No dedicated bicycle facilities are provided on Hinesburg Road. The typical cross section features marked shoulders that vary in width along the length of the corridor from 2 to 4 ft. A shoulder narrower than 4 ft is too narrow to be considered a bicycle facility. No shoulders are provided on the approaches to Williston Road or Kennedy Drive. Given the high traffic volume and speed and lack of consistent shoulder width, conditions for bicyclists can be considered “high stress.”

The intersections at both ends of the study area at Williston Road and Kennedy Drive are signalized. Several unsignalized intersections are located along Hinesburg Road consisting of three- and four-way intersections where the minor approaches are stop-controlled.

Table 2: Hinesburg Road Roadway Characteristics (source: VTrans Route Log Data)

<table>
<thead>
<tr>
<th></th>
<th>Hinesburg Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional classification</td>
<td>Principal Arterial</td>
</tr>
<tr>
<td>Length within study area</td>
<td>1 mile</td>
</tr>
<tr>
<td>Jurisdiction</td>
<td>Municipal</td>
</tr>
<tr>
<td>Right-of-way width (feet)</td>
<td>67 - 70 ft *</td>
</tr>
<tr>
<td>Roadway width (feet)</td>
<td>30 ft typical. Widens to 40 ft at some intersections</td>
</tr>
<tr>
<td>2016 AADT</td>
<td>10,295</td>
</tr>
<tr>
<td>Posted speed limit</td>
<td>35 MPH</td>
</tr>
</tbody>
</table>

*Approximate Right-of-Way
**AADT= Average Annual Daily Traffic

2.5.2 Land Use

Land use along the corridor consists mostly of low- to moderate-density residential development. A cemetery is located on the east side near the middle of the corridor. The northern end of the study area at Williston Road features one-story commercial uses. Several office buildings and multi-unit residential developments are located near the southern end of the study area at Kennedy Drive.

Hinesburg Road is adjacent to a development project called City Center, which aims to create a new mixed-use downtown area for the City of South Burlington. The project site is located directly to the west of Hinesburg Road. Modeling conducted for the 2010 *South Burlington, Market Street Improvements STP 5200 (17) Revised Environmental Assessment* predicted an increase in traffic on Hinesburg Road and intersecting streets with the proposed development. Market Street, the envisioned main street of City Center, ends at Hinesburg Road near the northern end of the study area. It is reasonable to assume that future development of the City Center site will increase travel demand for all modes along the Hinesburg Road corridor.

2.5.3 Natural Resources

Water Bodies, Wetlands, and Floodplains

As shown in *Figure 9*, there are two streams that cross Hinesburg Road in the study area. In the north, there is a stream with an associated FEMA Special Flood Hazard Area between Williston Road and Village Green Drive. Between Prouty Parkway and Kennedy Drive in the south, Potash Brook is a Priority Stream and its associated Special Flood Hazard Area crosses the study area.

There is also a VSWI wetland on the east side of Hinesburg Road at Barrett Street.

Agricultural Lands or Soils

Although the study area does include Statewide and Prime Agricultural Soils (*Figure 10*), it does not include land currently used for agriculture and the area is unlikely to be used for agriculture in the future.
Rare, Threatened, or Endangered Species

Figure 11 shows that there is one location in the Hinesburg Road study area that contains an Uncommon Species. This site is at the southern end between Deane Street and Kennedy Drive.

2.5.4 Built Environment

Utilities

Figure 12 indicates that there are water, gas, and sewer lines present along this section of Hinesburg Road, as well as overhead utilities. The intensity of utilities in this area means that there may be utility impacts if a new facility is constructed.

Stormwater Management

At either end of the study area (that is, the intersections with Williston Road and with Kennedy Drive), there are high concentrations of stormwater lines. At the Williston Road intersection there are multiple catch basins that accompany these lines, but the GIS data for the area around Kennedy Drive (Figure 13) did not indicate as many catch basins. The data show there are small segments of stormwater line crossing Hinesburg Road at various locations between Woodcrest Drive and Kennedy Drive, but as they do not appear to be connected to a larger system, they may actually be culverts. The stormwater line extending from Barrett Street crosses Hinesburg Road, and there is a segment along Hinesburg Road that is approximately 1,200 ft in length extending south from Wright Court.

Hazardous Waste

Parcels within the study containing hazardous waste are located at 26 Hinesburg Road, 290 Hinesburg Road, 620 Hinesburg Road, and 110 Kennedy Drive. See Figure 13.

2.5.5 Cultural Resources

Historic and Archeological

An Archeological Resource Assessment (ARA) was not conducted as part of this study because there are not considered to be any areas of historic or pre-contact sensitivity within or adjacent to the right-of-way.

Architectural

The building stock located within the study area consists primarily of single-family residential development and some one-story commercial/retail buildings. There are some office buildings and multi-unit residential buildings near the intersection with Kennedy Drive.

Section 4(f) and 6(f) Properties

The following properties may be subject to Section 4(f) designation:

- St. John Vianney Church (160 Hinesburg Road)
- 400 Hinesburg Road

No properties were identified that may be subject to Section 6(f) designation.
Figure 9: Hinesburg Road Wetlands
Figure 10: Hinesburg Road Agricultural Lands or Soils
Figure 11: Hinesburg Road Endangered Species
Figure 12: Hinesburg Road Utilities
Figure 13: Hinesburg Road Drainage
2.6 Allen Road, Harbor View Road, and Baycrest Drive

This study area is bounded four road segments:

- Allen Road from Baycrest Drive to Shelburne Road
- Harbor View Road from Shelburne Road to Baycrest Drive
- Baycrest Drive from Allen Road to Harbor View Road
- Shelburne Road/U.S. Route 7 from Allen Road to Harbor View Road

This study area will consider both on- and off-road connections parallel to Allen Road.

2.6.1 Roadway Characteristics

Allen Road

Allen Road runs east-west between Shelburne Road/U.S. Route 7 and Spear Street. Starting at Shelburne Road/U.S. Route 7, it features a nearly continuous upward slope as it travels eastward. Classified as a Major Collector, Allen Road is one of two roads between Interstate 189 and the Shelburne town line to provide direct through access between Shelburne Road and Spear Street—the other connection is via Swift Street.

Allen Road is a two-lane roadway that carries two-way traffic. Typical roadway characteristics can be found in Table 3. The typical travel lane width is 11 to 12 ft and there are no marked shoulders. Several driveways are located along Allen Road which provide access to commercial land uses and multi-unit residential developments. The intersection with Shelburne Road is a three-way signalized intersection. Parking is not permitted on Allen Road within the study area.

Pedestrian and bicycle facilities are present on some portions of Allen Road but not continuous along the entire length. A sidewalk segment approximately 340 ft long extends from 90 Allen Road to 100 Allen Road. A shared use path extends from the 120 Allen Road driveway to approximately 170 ft west of Baycrest Drive. The path is 8.5 ft wide. Both facilities are located on the north side of Allen Road.

Harbor View Road

Harbor View Road is a low-volume residential street that runs roughly parallel to Allen Road. Classified as a Local road, it is a two-lane roadway that carries two-way traffic. Typical roadway characteristics can be found in Table 3. Similar to Allen Road, Harbor View Road slopes uphill in the eastward direction. Several driveways are located along Harbor View Road which provide access to commercial land uses and multi-unit residential developments. The intersection with Shelburne Road is a three-way signalized intersection. At the eastern end, Harbor View Road terminates at a three-way intersection at Baycrest Drive. During field visits, parking was observed on the south side near 16 – 20 Harbor View Road.

A sidewalk is present on the north side for the entire length of Harbor View Road. On the south side, there is a sidewalk which starts at the 16 Harbor View Road driveway and extends eastward to the 20 Harbor View Road driveway. No dedicated bicycle facilities are provided. However, the roadway characteristics indicate that it is suitable for bicyclists to operate in the road with motor vehicles given the low volume (607 AADT) and low speed limit (25 MPH).

Baycrest Drive

Baycrest Drive is also a low-volume residential street. Starting from Harbor View Road, Baycrest Drive follows a curvilinear path in an upward slope towards Allen Road. Baycrest Drive carries two-way traffic and is an unclassified private road. Single-family residential development is typical on both sides of the roadway with driveways for access. Minor intersections are located at Irish Cove Road and Irish Farm Road. Typical roadway characteristics can be found in Table 3.
A shared use path is located along the west side of Baycrest Drive along the entire length within the study area. The path is 8.5 ft wide and connects with the shared use path on Allen Road.

Table 3: Allen Road, Harbor View Road, and Baycrest Drive Roadway Characteristics (source: VTrans Route Log Data)

<table>
<thead>
<tr>
<th></th>
<th>Allen Road</th>
<th>Harbor View Road</th>
<th>Baycrest Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional classification</td>
<td>Major Collector</td>
<td>Local</td>
<td>Unclassified</td>
</tr>
<tr>
<td>Length within study area</td>
<td>0.8 mile</td>
<td>0.4 mile</td>
<td>0.2 mile</td>
</tr>
<tr>
<td>Jurisdiction</td>
<td>Municipal</td>
<td>Municipal</td>
<td>Private</td>
</tr>
<tr>
<td>Right-of-way width (feet)</td>
<td>62 - 65 ft *</td>
<td>60 - 62 ft *</td>
<td>60 ft</td>
</tr>
<tr>
<td>Roadway width (feet)</td>
<td>22 - 28 ft (38 ft at Shelburne Rd. intersection)</td>
<td>32 ft</td>
<td>30 ft</td>
</tr>
<tr>
<td>2016 AADT</td>
<td>4,673</td>
<td>607</td>
<td>No data</td>
</tr>
<tr>
<td>Posted speed limit</td>
<td>35 MPH</td>
<td>25 MPH</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*Approximate Right-of-Way
**AADT= Average Annual Daily Traffic

2.6.2 Land Use

Land use within the study area includes low-density commercial, senior housing, multi-unit residential development, single-family residential development, and open space.

2.6.3 Natural Resources

Water Bodies, Wetlands, and Floodplains

As shown in Figure 14, there are areas in the eastern portion of this study area that are noted in the VSWI Advisory Layer. Likewise, there are some areas that abut the study area to the north, east, and south. There is a section of a larger VSWI wetland that crosses Allen Road between Shelburne Road and the recreational path that connects Harbor View Road and Allen Road. There are also two streams that traverse the eastern half of the study area in a northwest-southeast direction.

Agricultural Lands or Soils

Figure 15 indicates that there are Agricultural Soils of Prime and Statewide Importance in this study area. However, the area does not include land currently used for agriculture and is unlikely to be used for agriculture in the future.

Rare, Threatened, or Endangered Species

No rare, threatened, or endangered species have been identified within the study area. See Figure 16.

2.6.4 Built Environment

Utilities

Figure 17 indicates that there are overhead utilities along Bay Crest Drive, Allen Road, and Shelburne Road. There are also underground water, gas, and sewer lines along these roadways, as well as on Harbor View Road.

Stormwater Management

Allen Road has many culverts along it, as well as stormwater lines for most of its length except for a segment in the middle of this study area. There is also stormwater line along Shelburne Road, and most of Harbor View Road and Bay Crest Drive, as shown in Figure 18. Stormwater lines are present between Harbor View Road and Allen Road as well. There are multiple catch basins throughout the area, except for the eastern two-thirds of Allen Road.
Hazardous Waste
Parcels within the study area containing hazardous waste are located at 120 Allen Road, 80 Allen Road, and 1380 Shelburne Road. See Figure 18.

2.6.5 Cultural Resources
Historic and Archeological
An Archeological Resource Assessment (ARA) was not conducted as part of this study because there are not considered to be any areas of historic or pre-contact sensitivity within or adjacent to the right-of-way.

Architectural
The building stock located within the study area consists primarily of single-family residential development, with multi-unit residential buildings and some commercial buildings.

Section 4(f) and 6(f) Properties
No properties were identified in the study area that may be subject to Section 4(f) or Section 6(f).
Figure 14: Allen Road Wetlands
Figure 15: Allen Road Agricultural Lands or Soils
Figure 16: Allen Road Endangered Species
Figure 17: Allen Road Utilities
Figure 18: Allen Road Drainage
2.7 Fayette Drive
This study area includes Fayette Drive and adjacent parcels located to the north and south. The approximate limits of the study area are bounded by Queen City Park Road, Shelburne Road, Holmes Road, and the Central Vermont Railroad. Fayette Drive begins at a perpendicular intersection with Shelburne Road. From there, Fayette Drive bends northward to travel parallel to Shelburne Road. It then continues to its northern terminus at Hannafords Drive. The purpose of selecting this study area is to examine north-south bicycle routes that provide an alternative to Shelburne Road, a major thoroughfare that does not have bicycle facilities on the segment adjacent to the study area.

2.7.1 Roadway Characteristics
Fayette Drive is an unclassified road that runs north-south. The road is publicly-owned from Shelburne Road to approximately 75 ft south of Olde Orchard Park. The remainder is privately owned. Outside of Fayette Drive, the remainder of the study area is primarily under private ownership. Several private roads that provide access to adjacent land uses are in the study area, including Hannafords Drive, Comstock Circle, and Lewis Road. Holmes Road and Queen City Park Road are publicly owned and are located at the southern and northern ends of the study area, respectively. The roads in the study area are either located in the public right-of-way or on private parcels for which the City of South Burlington has an irrevocable offer of dedication.

Fayette Drive is a two-lane roadway that carries two-way traffic. Typical roadway characteristics can be found in Table 4. The approach to Shelburne Road consists of a left-through lane and a right-turn lane. Several driveways are located along Fayette Drive which provide access to commercial land uses and multi-unit residential developments. On-street parking stalls are marked on both sides of the street for the northernmost 500 ft. A series of “No Parking” signs are located on the northbound side near the southern end of Fayette Drive.

Sidewalks are located on both sides of Fayette Drive for most of its length. For the northernmost 500 ft of the corridor, adjacent to the Lowe’s site, there is a sidewalk only on the east side. The typical sidewalk width is 5 ft and is offset from the roadway by a grass buffer. A parcel located near the northern end of the study area, which is the former site of a Kmart, is being redeveloped and will include bike lanes and sidewalks on the access road.

Table 4: Fayette Drive Roadway Characteristics (source: VTrans Route Log Data)

<table>
<thead>
<tr>
<th>Functional classification</th>
<th>Unclassified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length within study area</td>
<td>approximately 4,500 ft, to be determined by alternative</td>
</tr>
<tr>
<td>Jurisdiction</td>
<td>Public and Private</td>
</tr>
<tr>
<td>Right-of-way width (feet)</td>
<td>60 - 63 ft *</td>
</tr>
<tr>
<td>Roadway width (feet)</td>
<td>32 ft typical. Ranges from 23 - 40 ft</td>
</tr>
<tr>
<td>2016 AADT**</td>
<td>1,785</td>
</tr>
<tr>
<td>Posted speed limit</td>
<td>25 MPH</td>
</tr>
</tbody>
</table>

*Approximate Right-of-Way
**AADT= Average Annual Daily Traffic

2.7.2 Land Use
The developed parcels within the study area consist primarily of “big box” retail stores, low-density commercial uses, and multi-unit residential development. The study area also contains several
undeveloped parcels. The site of a former Kmart is proposed for redevelopment as a Hannaford supermarket, which would relocate from its current location on an adjacent parcel.

2.7.3 Natural Resources
Water Bodies, Wetlands, and Floodplains
As shown in Figure 19, there are two streams in the study area. Potash Brook is a Priority Stream and crosses Queen City Park Road at the northwest corner of the study area; it has an associated FEMA Special Flood Hazard Area. The other stream is not classified as Priority; it crosses Fayette Road just south of Orchard Park.

The VSWI Advisory Layer indicates that there are wetlands on the east and west sides of Fayette Road near Orchard Park. There are also two small wetlands on the north and south sides of Hannafords Drive between Fayette Road and Shelburne Road. There is a small wetland behind the former Kmart site.

Agricultural Lands or Soils
Figure 20 indicates that there are Agricultural Soils of Prime and Statewide Importance in this study area. However, the area does not include land currently used for agriculture and the area is unlikely to be used for agriculture in the future.

Rare, Threatened, or Endangered Species
Figure 21 shows that there is one location in the Fayette Drive study area that contains an Uncommon Species. This site is at the northwestern corner between Queen City Park Road and Kindness Court.

2.7.4 Built Environment
Utilities
As shown in Figure 22, there are many underground utilities within the study area. Water, gas, and sewer lines are prevalent along the corridors, but also through open parcels.

There are utility poles along Queen City Park Road, at the former Kmart and Hannaford sites, and along Fayette Drive south of the Lowe’s site.

The intensity of utilities in this area means that there are likely to be impacts if a new facility is constructed.

Stormwater Management
The study area is served by a closed system of stormwater lines and catch basins, as shown in Figure 23.

Hazardous Waste
Parcels within the study containing hazardous waste are located at 1325 Shelburne Road, 1095 Shelburne Road, on Queen City Park Road just south of Pine Street. See Figure 23.
2.7.5 Cultural Resources

Historic and Archeological

An Archeological Resource Assessment (ARA) is not being conducted as part of this study because there is not considered to be any areas of historic or pre-contact sensitivity within or adjacent to the right-of-way.

Architectural

The building stock located within the study area consists primarily of large commercial buildings and some multi-unit residential buildings.

Section 4(f) and 6(f) Properties

The following properties may be subject to Section 4(f) designation:

- 1233 Shelburne Road

No properties were identified that may be subject to Section 6(f) designation.
Figure 19: Fayette Drive Wetlands
Figure 20: Fayette Drive Agricultural Lands or Soils
Figure 21: Fayette Drive Endangered Species
Figure 22: Fayette Drive Utilities
Figure 23: Fayette Drive Drainage
3.0 Concept Alternatives Analysis

The following sections provide descriptions and comparisons for each conceptual alternative including an analysis, evaluation, and selection of the preferred concept alternative with an evaluation matrix and opinion of probable construction costs.

3.1 Spear Street

3.1.1 Evaluation of Concept Alternatives

Alternative 1: Bike Lanes

Alternative 1 envisions improvements to Spear Street that could be implemented in the short- to medium-term as part of a corridor repaving and/or restriping project with minor pavement widening between the UVM George D. Aiken Forestry Sciences Laboratory and Swift Street. It features bike lanes along the entire length of Spear Street within the study area.

Alternative 1 proposes a bike facility between the UVM George D. Aiken Forestry Sciences Laboratory and Swift Street where there currently is not one. From Swift Street to the Shelburne town line, it adds a bike facility in the northbound direction where currently there is a bike lane only in the southbound direction. A typical cross-section within the study area corridor is shown in Figure 24. Reference source not found.

Travel lanes would be narrowed to a typical width of 10 ft and the bike lanes would be at least 5 ft wide. From the UVM George D. Aiken Forestry Sciences Laboratory to the vicinity of Songbird Road, implementing this cross section requires widening the roadway from a typical width of 27 ft to a typical width of 31 ft. From Songbird Road to Swift Street, the alternative can be implemented within the existing roadway width. From Swift Street to the Shelburne town line, the proposed cross section can be implemented without widening the existing roadway. However, the quality of the pavement in this segment is degraded and therefore it recommended that the improvements be implemented in conjunction with repaving. Refer to the Appendix for conceptual design roll plan for all recommendations. Alternative 1 includes the following spot recommendations:

- Upgrade existing crosswalks and curb ramps to meet ADA standards;
- Provide a bicycle jughandle at the northern end of the corridor at the UVM George D. Aiken Forestry Sciences Laboratory driveway to allow northbound bicyclists to position

Figure 24: Spear Street Alternative I Cross Section

Figure 25: Proposed Jughandle
themselves to access the South Burlington Rec Path (Figure 25);

- Maintain the bike lanes on the approaches to the signalized intersection at Swift Street and Spear Street, and provide dashed bike lanes through the intersection to assist with lateral positioning (Figure 26);
- Loam and seed at the signalized intersection at Swift Street and Spear Street as a natural method to tighten the radius of the western corner of the intersection (Figure 26); and
- Maintain the bike lanes at the unsignalized intersections at Pinnacle Drive and Nowland Farm Drive where the road widens to accommodate a left turn lane (Figure 27).
Alternative 2: Shared Use Path and Bike Lanes

Alternative 2 envisions improvements that can be implemented as part of a longer-term reconstruction of the corridor and could be divided into phases with Swift Street as the dividing line. Typical cross-sections within the study area corridor are shown in Figure 28.

Figure 28: Spear Street Alternative 2 Cross Sections

Starting at the UVM George D. Aiken Forestry Sciences Laboratory driveway, a shared use path with a typical width of 8 ft is proposed on the west side of Spear Street. The roadway is narrowed to provide 10-ft travel lanes in either direction, 1-ft shoulders, and a grass buffer with a typical width of 3 ft is provided between the roadway and shared use path. At the intersection of Swift Street, the shared use path would end and bicyclists in the southbound direction would be redirected onto the bike lanes on the roadway. In the northbound direction, a jughandle is proposed to transition bicycles to the west side of Spear Street to access the shared use path north of Swift Street. Bike lanes are proposed on the roadway south of Swift Street in a typical cross section that includes two 10-ft travel lanes and two 5.5-ft bike lanes. This cross section continues to the Shelburne town line and connects to existing bike lanes on Spear Street in Shelburne. Refer to the Appendix for conceptual design roll plan for all recommendations. Alternative 2 includes the following spot recommendations:

- Upgrade existing crosswalks and curb ramps to meet ADA standards;
- Provide a crosswalk at Songbird Road for pedestrians and bicyclists to connect to the existing shared use path on Songbird Road via the existing curb ramp (Figure 29);
- Reconstruct the Swift Street intersection with smaller curb radii to reduce motorist turning radii and speeds to calm traffic. Add pedestrian signals and a

Figure 29: Proposed Crosswalk at Songbird Road
transition point between the proposed shared use path and existing shared use path on Swift Street (Figure 30);

- At the signalized intersections at Swift Street and Spear Street, transition bicyclists between the shared use path and the bike lanes south of Swift Street. Provide a jughandle to assist the northbound transition from bike lane to shared use path for bicyclists (Figure 30); and
- At the unsignalized intersections at Pinnacle Drive and Nowland Farm Drive where the road widens to accommodate a left turn lane, maintain the bike lanes.

Alternative 2 provides a high-comfort pedestrian and bicycle facility from UVM George D. Aiken Forestry Sciences Laboratory to Swift Street in the form of a shared use path and fills in a gap in the recreational path network. Further evaluation is needed to determine if the slope in the vicinity of the I-189 westbound overpass is compliant with accessibility standards. South of Swift Street, a high-comfort north-south bicycle route parallel to Spear Street is planned as part of new development to the east of Spear Street.

3.1.2 Preferred Concept Alternative
Evaluating design impacts along with input from public involvement through workshops, presentations, and meetings, Alternative 2 was identified and supported by the Planning Commission as the recommended preferred alternative for Spear Street. Benefits of Alternative 2 include the connections it provides and the modes of transportation that it can serve. Alternative 2 provides a more comfortable route for both pedestrians and bicyclists, whereas pedestrians would not benefit from Alternative 1. The shared use path would also connect to the South Burlington Recreational Path by the UVM George D. Aiken Forestry Sciences Laboratory which has both pedestrian and bicyclist users. Alternative 2 would not require pavement widening, which can be costly.

3.1.3 Opinion of Probable Construction Costs
The opinion of probable construction costs for Spear Street Alternative 1 is $636,000 and Alternative 2 is $468,000. The cost estimates differ primarily due to the varying design configurations north of Swift Street, pavement widening for bike lanes in Alternative 1 or the shared use path in Alternative 2. For the portion south of Swift Street, costs for the two alternatives are equal. The cost estimate was developed
from the preferred concept alternative plans and account for the anticipated construction costs which include engineering, construction, construction administration, and a 20% contingency. The cost estimate does not include potential environmental permitting, easements, or property acquisition.

3.1.4 Evaluation Matrix

All of the anticipated costs, resource impacts, and permit requirements for Spear Street Alternative 1 and Alternative 2 have been summarized in the evaluation matrix below in Table 5: Spear Street Alternatives Comparison Matrix.
Table 5: Spear Street Alternatives Comparison Matrix

<table>
<thead>
<tr>
<th>Item</th>
<th>Alternative 1 - Bike Lanes (north of Swift Street)</th>
<th>Alternative 2 - Shared Use Path and Sidewalk (north of Swift Street)</th>
<th>Both Alternatives - Bike Lanes (south of Swift Street)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedestrian Facility Length</td>
<td>N/A</td>
<td>0.72 miles</td>
<td>N/A</td>
</tr>
<tr>
<td>Bicycle Facility Length</td>
<td>0.72 miles</td>
<td>0.72 miles</td>
<td>1.88 miles</td>
</tr>
<tr>
<td>Pedestrian Facility Width</td>
<td>N/A</td>
<td>8 FT</td>
<td>N/A</td>
</tr>
<tr>
<td>Bicycle Facility Width</td>
<td>5 FT (both sides)</td>
<td>8 FT</td>
<td>5 FT (both sides)</td>
</tr>
<tr>
<td>Pedestrian Facility Surface</td>
<td>N/A</td>
<td>Bituminous Concrete</td>
<td>N/A</td>
</tr>
<tr>
<td>Bicycle Facility Surface</td>
<td>Bituminous Concrete</td>
<td>Bituminous Concrete</td>
<td>Bituminous Concrete</td>
</tr>
<tr>
<td>Terrain</td>
<td>Rolling natural slopes</td>
<td>Rolling natural slopes</td>
<td>Rolling natural slopes</td>
</tr>
<tr>
<td>Potential Impacts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Property Impacts</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Utility Impacts- Aerial</td>
<td>No</td>
<td>Possible</td>
<td>No</td>
</tr>
<tr>
<td>Utility Impacts- Underground</td>
<td>No</td>
<td>Possible</td>
<td>No</td>
</tr>
<tr>
<td>Archeological Impacts</td>
<td>No</td>
<td>Additional review recommended during design phase</td>
<td>No</td>
</tr>
<tr>
<td>Historic Property Impacts</td>
<td>Additional review recommended during design phase</td>
<td>Additional review recommended during design phase</td>
<td>Additional review recommended during design phase</td>
</tr>
<tr>
<td>Trees- Removed/Replaced</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Mailboxes - Removed/Replaced</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Right-of-Way Impacts</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Class 2 Wetland Impacts</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Permits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT 250</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>NEPA</td>
<td>Categorical Exclusion</td>
<td>Categorical Exclusion</td>
<td>Categorical Exclusion</td>
</tr>
<tr>
<td>404 COE Wetlands (<3,000 SF Impact- Category 1: Self Verification)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ANR Wetlands</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Stream Alteration</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Stormwater Discharge</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Construction General</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Archeology- Phase 1B</td>
<td>Additional review recommended during design phase</td>
<td>Additional review recommended during design phase</td>
<td>Additional review recommended during design phase</td>
</tr>
<tr>
<td>Section 106 / Historic Prime Agricultural Soils</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Rare, Threatened, Endangered Species</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Opinion of Probable Construction Costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conceptual Cost Estimate</td>
<td>$460,000</td>
<td>$300,000</td>
<td>$168,000</td>
</tr>
</tbody>
</table>
3.2 Hinesburg Road

3.2.1 Evaluation of Concept Alternatives

Alternative 1: Bike Lanes

Alternative 1 envisions improvements that could be implemented in the short- to medium-term as part of a corridor repaving and/or restriping project. It features bike lanes along the entire length of Hinesburg Road within the study area with the exception of the approaches to the signalized intersections at Williston Road and Kennedy Drive at either end. At both intersections, bike lanes are terminated prior to the approach to accommodate existing turning lanes and shared lane markings are provided to indicate which lane bicyclists should use to proceed through the intersection. The typical cross section along the corridor features travel lanes narrowed to a width of 10 ft and the bike lanes would be at least 5 ft wide. A typical cross-section within the study area corridor is shown in Figure 31. Refer to the Appendix for conceptual design roll plan for all recommendations. Alternative 1 includes the following spot recommendations:

- Upgrade existing crosswalks and curb ramps to meet ADA standards;
- Provide crosswalks and Rectangular Rapid Flashing Beacons (RRFBs) across Hinesburg Road at or near Ruth Street, Wright Court, Prouty Parkway, and just north of the 550 Hinesburg Road driveway to improve connectivity along the Potash Brook hiking trail; and
- Install RRFBs at existing crosswalk in front of the St. John Vianney Church. Maintain accessible parking spaces to preserve access to the church (Figure 32).

Alternative 2: Shared Use Path

Alternative 2 envisions improvements that can be implemented as part of a longer-term reconstruction of the corridor. In this alternative, a shared use path with a typical width of 10 ft is proposed for construction along the west side of Hinesburg Road. At the northern end, it would connect with the planned shared use path to be built as part of the reconstruction of the Williston Road/Hinesburg Road intersection. At the approach to the intersection with Kennedy Drive, the path would bend westward to connect with the existing shared use path on Kennedy Drive at a right angle. A typical cross-section
within the study area corridor is shown in Figure 33. Refer to the Appendix for conceptual design roll plan for all recommendations. Alternative 2 includes the following spot recommendations:

- Upgrade existing crosswalks and curb ramps to meet ADA standards;
- Provide crosswalks and RRFBs across Hinesburg Road at or near Ruth Street, Wright Court, Prouty Parkway, and just north of the 550 Hinesburg Road driveway to improve connectivity along the Potash Brook hiking trail;
- Install RRFBs at existing crosswalk in front of the St. John Vianney Church. Maintain accessible parking spaces to preserve access to the church; and
- At the intersection of Market Street, connect the proposed shared use path to shared use paths on both sides of Market Street planned as part of the Market Street/Hinesburg Road intersection reconstruction.

3.2.2 Preferred Concept Alternative
Evaluating design impacts along with input from public involvement through workshops, presentations, and meetings, Alternative 2 was identified and supported by the Planning Commission as the recommended preferred alternative for Hinesburg Road. Alternative 2 upgrades the existing sidewalk network to become a shared use path for both pedestrians and bicyclists. It not only benefits bicyclists by providing a connection between Williston Road and Kennedy Drive, but pedestrians will also have a more comfortable facility to use. At the same time, these roadway users will be separated from vehicular traffic.

3.2.3 Opinion of Probable Construction Costs
The opinion of probable construction costs for Hinesburg Road Alternative 1 is $180,000 and Alternative 2 is $560,000. The cost of constructing a shared use path is higher than retrofitting bicycle facilities onto an existing roadway. However, the safety and comfort level benefits are substantial for all roadway users. The cost estimate was developed from the preferred concept alternative plans and account for the anticipated construction costs which include engineering, construction, construction administration, and a 20% contingency. The cost estimate does not include potential environmental permitting, easements, or property acquisition.

3.2.4 Evaluation Matrix
All of the anticipated costs, resource impacts, and permit requirements for Hinesburg Road Alternative 1 and Alternative 2 have been summarized in the evaluation matrix below in Table 6: Hinesburg Road Alternatives Comparison Matrix.
Table 6: Hinesburg Road Alternatives Comparison Matrix

<table>
<thead>
<tr>
<th>Item</th>
<th>Alternative 1 - Bike Lanes</th>
<th>Alternative 2 - Shared Use Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedestrian Facility Length</td>
<td>N/A (existing)</td>
<td>1.00 mile</td>
</tr>
<tr>
<td>Bicycle Facility Length</td>
<td>1.00 mile</td>
<td>1.00 mile</td>
</tr>
<tr>
<td>Pedestrian Facility Width</td>
<td>N/A (existing)</td>
<td>10 FT</td>
</tr>
<tr>
<td>Bicycle Facility Width</td>
<td>5 FT (both sides)</td>
<td>10 FT</td>
</tr>
<tr>
<td>Pedestrian Facility Surface</td>
<td>N/A (existing)</td>
<td>Bituminous Concrete</td>
</tr>
<tr>
<td>Bicycle Facility Surface</td>
<td>Bituminous Concrete</td>
<td>Bituminous Concrete</td>
</tr>
<tr>
<td>Terrain</td>
<td>Generally Flat</td>
<td>Generally Flat</td>
</tr>
<tr>
<td>Potential Impacts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Property Impacts</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Utility Impacts- Aerial</td>
<td>No</td>
<td>Possible</td>
</tr>
<tr>
<td>Utility Impacts- Underground</td>
<td>No</td>
<td>Possible</td>
</tr>
<tr>
<td>Archeological Impacts</td>
<td>No</td>
<td>Additional review recommended during design phase</td>
</tr>
<tr>
<td>Historic Property Impacts</td>
<td>No</td>
<td>Additional review recommended during design phase</td>
</tr>
<tr>
<td>Trees - Removed/Replaced</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Mailboxes - Removed/Replaced</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Right-of-Way Impacts</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Class 2 Wetland Impacts</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Permits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT 250</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>NEPA</td>
<td>Categorical Exclusion</td>
<td>Categorical Exclusion</td>
</tr>
<tr>
<td>404 COE Wetlands (<3,000 SF Impact Category 1: Self Verification</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ANR Wetlands</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Stream Alteration</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Stormwater Discharge</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Construction General</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Archeology- Phase 1B</td>
<td>No</td>
<td>Additional review recommended during design phase</td>
</tr>
<tr>
<td>Section 106 / Historic</td>
<td>No</td>
<td>Additional review recommended during design phase</td>
</tr>
<tr>
<td>Prime Agricultural Soils</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Rare, Threatened, Endangered Species</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Opinion of Probable Construction Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conceptual Cost Estimate</td>
<td>$180,000</td>
<td>$560,000</td>
</tr>
</tbody>
</table>
3.3 Allen Road, Harbor View Road, and Baycrest Drive

3.3.1 Evaluation of Concept Alternatives

Alternative 1: Bike Boulevard

Alternative 1 envisions improvements that could be implemented in the short- to medium-term using striping, pavement markings, signage, and the construction of raised traffic calming devices.

On Baycrest Drive and Harbor View Road, a combination of bike lanes, advisory bike lanes, raised traffic calming, and bicycle wayfinding signage are proposed to provide a preferred east-west bicycle route between Spear Street and Shelburne Road parallel to the Allen Road corridor.

Advisory bike lanes are currently considered experimental and require an approved Request to Experiment (RTE) from the Federal Highway Administration (FHWA). The speed and volume of traffic on Harbor View Road and Baycrest Drive fall below the maximum criteria for advisory shoulders and therefore these streets may be suitable candidates for such experimentation. FHWA has approved numerous advisory bike lane RTEs across the country recently, which is promising for this project.

On Allen Road, bike lanes are proposed starting at Shelburne Road and ending just west of Karen Drive. From Karen Drive, a bike lane is proposed in the eastbound/uphill direction and shared lane markings are proposed in the westbound/downhill direction. This configuration continues to approximately 99 Allen Road, where the bike lane would transition to shared lane markings in both directions. This transition is due to the existing pavement width of Allen Road narrowing in this vicinity, making the continuation of the bike lane infeasible without widening the roadway.

Typical cross-sections within the study area corridor are shown in Figure 34. Refer to the Appendix for conceptual design roll plan for all recommendations. Alternative 1 includes the following spot recommendations:

- Upgrade existing crosswalks and curb ramps to meet ADA standards;
- Construct a raised crosswalk approximately 50 ft west of the intersection of Harbor View Road and Collins Boulevard to provide a connection to the existing pathway through the Pillsbury Senior Community. The crosswalk will provide a way for pedestrians to access the sidewalk on the north side of Harbor View Road, which connects to Shelburne Road (Figure 35); and
- Construct curb extensions on the south side of Harbor View Road at the existing crosswalk at the Pillsbury Manor driveway and just north of Collins Boulevard.
Alternative 2: Shared Use Path

Alternative 2 envisions improvements that would require more intensive design, permitting, and construction and thus a longer timeline. In this alternative, a shared use path with a typical width of 8 ft is constructed along the north side of Allen Road from Shelburne Road to meet with the existing shared use path that currently terminates at the 120 Allen Road driveway. This alternative includes replacing the existing 340 ft-long sidewalk segment from 90 Allen Road to 100 Allen Road to be a shared use path. A typical cross-section within the study area corridor is shown in Figure 36. Refer to the Appendix for conceptual design roll plan for all recommendations. Alternative 2 includes the following spot recommendations:

- Upgrade existing crosswalks and curb ramps to meet ADA standards;
- Reconstruct the intersection of Allen Road and Shelburne Road to provide a connection from the proposed shared use path to existing crosswalks where bicyclists can connect to the existing bike lanes on Shelburne Road; and
- Construct a retaining wall where the proposed shared use path crosses Bartlett Brook; an alternative approach involves constructing a short bridge segment adjacent to the culvert (Figure 37).
3.3.2 Preferred Concept Alternative
Evaluating design impacts along with input from public involvement through workshops, presentations, and meetings; Alternative 1 was identified and supported by the Planning Commission as the recommended preferred alternative for Allen Road. Based on the low vehicle volumes on the roadway, a bike boulevard would be an acceptable facility for bicyclists. Alternative 1 for Allen Road was selected as the most cost-effective option after evaluating the cost of each alternative and the future volumes of the roadway by mode.

3.3.3 Opinion of Probable Construction Costs
The opinion of probable construction costs for Allen Road Alternative 1 is $120,000 for Harbor View Road, Baycrest Drive, and Allen Road; and Alternative 2 is $360,000 for Allen Road. The cost of constructing a shared use path is higher than retrofitting bicycle facilities onto an existing roadway. The cost estimate was developed from the preferred concept alternative plans and account for the anticipated construction costs which include engineering, construction, construction administration, and a 20% contingency. The cost estimate does not include potential environmental permitting, easements, or property acquisition.

3.3.4 Evaluation Matrix
All of the anticipated costs, resource impacts, and permit requirements for Allen Road Alternative 1 and Alternative 2 have been summarized in the evaluation matrix below in Table 7: Allen Road Alternatives Comparison Matrix.
Table 7: Allen Road Alternatives Comparison Matrix

<table>
<thead>
<tr>
<th>Item</th>
<th>Alternative 1 - Bike Boulevard</th>
<th>Alternative 2 - Shared Use Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedestrian Facility Length</td>
<td>N/A (existing)</td>
<td>0.4 miles</td>
</tr>
<tr>
<td>Bicycle Facility Length</td>
<td>1.4 miles</td>
<td>0.4 miles</td>
</tr>
<tr>
<td>Pedestrian Facility Width</td>
<td>N/A (existing)</td>
<td>8 FT</td>
</tr>
<tr>
<td>Bicycle Facility Width</td>
<td>0 - 6 FT (both sides)</td>
<td>8 FT</td>
</tr>
<tr>
<td>Pedestrian Facility Surface</td>
<td>N/A (existing)</td>
<td>Bituminous Concrete</td>
</tr>
<tr>
<td>Bicycle Facility Surface</td>
<td>Bituminous Concrete</td>
<td>Bituminous Concrete</td>
</tr>
<tr>
<td>Terrain</td>
<td>Rolling Natural Slopes</td>
<td>Rolling Natural Slopes</td>
</tr>
<tr>
<td>Potential Impacts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Property Impacts</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Utility Impacts- Aerial</td>
<td>No</td>
<td>Possible</td>
</tr>
<tr>
<td>Utility Impacts- Underground</td>
<td>No</td>
<td>Possible</td>
</tr>
<tr>
<td>Archeological Impacts</td>
<td>No</td>
<td>Additional review recommended</td>
</tr>
<tr>
<td></td>
<td></td>
<td>during design phase</td>
</tr>
<tr>
<td>Historic Property Impacts</td>
<td>No</td>
<td>Additional review recommended</td>
</tr>
<tr>
<td></td>
<td></td>
<td>during design phase</td>
</tr>
<tr>
<td>Trees- Removed/Replaced</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Mailboxes - Removed/Replaced</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Right-of-Way Impacts</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Class 2 Wetland Impacts</td>
<td>No</td>
<td>Possible</td>
</tr>
<tr>
<td>Permits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT 250</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>NEPA</td>
<td>Categorical Exclusion</td>
<td>Categorical Exclusion</td>
</tr>
<tr>
<td>404 COE Wetlands (<3,000 SF Impact Category 1: Self Verification)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ANR Wetlands</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Stream Alteration</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Stormwater Discharge</td>
<td>Yes, construction activities</td>
<td>Yes, construction activities</td>
</tr>
<tr>
<td></td>
<td>>1 acre</td>
<td>>1 acre</td>
</tr>
<tr>
<td>Construction General</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Archeology- Phase 1B</td>
<td>No</td>
<td>Additional review recommended</td>
</tr>
<tr>
<td></td>
<td></td>
<td>during design phase</td>
</tr>
<tr>
<td>Section 106 / Historic</td>
<td>No</td>
<td>Additional review recommended</td>
</tr>
<tr>
<td></td>
<td></td>
<td>during design phase</td>
</tr>
<tr>
<td>Prime Agricultural Soils</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Rare, Threatened, Endangered Species</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Opinion of Probable Construction Costs

| Conceptual Cost Estimate | $120,000 | $360,000 |
3.4 Fayette Drive

3.4.1 Evaluation of Concept Alternatives

The Fayette Drive study area corridor is comprised primarily of modifications to improve bicycle circulation and wayfinding along existing streets. There are multiple parts to this study area:

- Queen City Park Road between Pine Street and the former Kmart site;
- Two connection alternatives between the former Kmart site and Fayette Drive;
- Fayette Drive between Hannafords Drive and Lowe’s Driveway;
- Fayette Drive between Lowe’s Driveway and Olde Orchard Park;
- Fayette Drive between Olde Orchard park and Reel Road; and
- Fayette Drive between Reel Road and Shelburne Road.

Two alternatives, Alternative 1 and Alternative 2, were developed for the study area corridor. In both alternatives, bike lanes are proposed on Queen City Park Road from Pine Street to the entrance to the former Kmart site. The bike lanes connect to planned bike lanes that will be installed as part of the redevelopment of the former Kmart site. From the southern end of the former Kmart site, a shared use path is built across an undeveloped parcel to connect to Fayette Drive. Alternative 1B / Alternative 2B provide a second option for this connection that proposes an on-street bike route with wayfinding on Hannafords Drive and on the unnamed service road between Hannafords Drive and the former Kmart site. These sections are shown in Figure 38, Figure 39, and Figure 40.

Figure 38: Queen City Park Road Alternative 1 and 2 Cross Section

Figure 39: Connection from Former Kmart Driveway to Fayette Drive Alternative 1 and 2 Cross Section

Figure 40: Connection from Kmart Driveway to Fayette Drive Alternative 1B and 2B Cross Section
Alternative 1: Advisory Bicycle Lanes

Alternative 1 envisions improvements that could be implemented in the short- to medium-term using striping, pavement markings, and signage. On Fayette Drive, advisory bike lanes are proposed starting at Hannafords Drive and extending to just south of the Lowe’s driveway. On-street parking is retained between Hannafords Drive and the Lowe’s driveway. Continuing south, shared lane markings are proposed for approximately 430 ft, where they transition to bike lanes at the approach to Olde Orchard Park. The reason for the change of facilities between the Lowe’s driveway and Olde Orchard Park is due to the fact that Fayette Drive widens significantly between these two intersections. From Olde Orchard Park to Shelburne Road, bike lanes are proposed. Typical cross-sections within the study area corridor are shown in Figure 41. Refer to the Appendix for conceptual design roll plan for all recommendations. This alternative includes the following spot recommendations:

- Upgrade existing crosswalks and curb ramps to meet ADA standards; and
- Construct a raised intersection at Fayette Drive/Hannafords Drive.

Figure 41: Fayette Drive Alternative 1 Cross Sections

Alternative 2: Shared Use Path

Alternative 2 envisions improvements that would require more intensive design, permitting, and construction and thus a longer timeline. Alternative 2 contains all the improvements described in Alternative 1 but provides an additional 10 ft shared use path on the west side of Fayette Drive between Hannafords Drive and Reel Road. Typical cross-sections within the study area corridor are shown in Figure 42. Refer to the Appendix for conceptual design roll plan for all recommendations. This alternative includes the following spot recommendations:

- Upgrade existing crosswalks and curb ramps to meet ADA standards; and
- Construct a raised intersection at Fayette Drive/Hannafords Drive.
3.4.2 Reel Road Connection Options
In addition to both alternatives, a desire for a parallel low-stress bicycling route between Fayette Drive and Comstock Circle was expressed as an alternative to bicycling on Shelburne Road. Two options were developed for this route, seen in Figure 43. Similar to the alternatives, the first option presents a sidewalk-level shared use path for both pedestrians and bicyclists, while the second option presents advisory bike lane facilities. Driveway crossings for both options require the construction of raised crossings. In the second option with the advisory bike lane facility, a raised two-leg intersection is proposed to bring bicyclists onto the sidewalk level for the connection to Comstock Circle. Full
conceptual designs for the options are provided in the Appendix.

Figure 43: Reel Road Options

The connection to Comstock Circle would follow with shared lane markings along the western side of Comstock Circle, advisory bike lanes or a shared use path along the east side of Lewis Road, and either striped bike lanes or shared use paths on both sides of Holmes Road to connect to Shelburne Road. The City is working with the landowner, who is currently redeveloping this area, on future opportunities to complete these missing connections.

3.4.3 Preferred Concept Alternative

Evaluating design impacts, input from public involvement through workshops, presentations, and meetings; both alternatives have been identified and supported by the Planning Commission as the recommended preferred alternative for Fayette Drive and will be used in two construction phases. In-road bicycle facilities from Alternative 1 will be added as the initial phase of construction and will remain when Alternative 2 is built as the second phase of construction to provide multiple options for bicyclists to use. A shared use path on the west side of Fayette Drive will upgrade the connection for pedestrian and bicyclists from the Kmart site to the residences around Olde Orchard Park, Comstock Circle, and east of Shelburne Road.

3.4.4 Opinion of Probable Construction Costs

The opinion of probable construction costs for Fayette Drive Alternative 1 is $170,000 and Alternative 2 is $290,000. The cost difference between the two alternatives lies with the shared use path between
Fayette Drive at Hannafords Drive and Fayette Drive at Reel Road. Costs can also vary based on the decision to implement Alternative 1B / Alternative 2B in conjunction or in place of the shared use path from the Kmart site to Fayette Drive at Hannafords Drive. The cost estimate was developed from the preferred concept alternative plans and account for the anticipated construction costs which include engineering, construction, construction administration, and a 20% contingency. The cost estimate does not include potential environmental permitting, easement, or property acquisition.

3.4.5 Evaluation Matrix
The anticipated costs, resource impacts, and permit requirements for Fayette Drive Alternative 1 and Alternative 2 have been summarized in the evaluation matrix below in Table 8. Note that the summary matrix focuses on the routing along Fayette Drive to Shelburne Road and does not include the routing options for Reel Road/Comstock Circle/Lewis Road.
Table 8: Fayette Drive Alternatives Comparison Matrix

Alternatives Comparison Matrix
Queen City Park Road/Fayette Drive | South Burlington, VT

<table>
<thead>
<tr>
<th>Item</th>
<th>Alternative 1 - Advisory Bike Lanes</th>
<th>Alternative 2 - Shared Use Path</th>
<th>Alternative 1B & 2B - Hannafords Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedestrian Facility Length</td>
<td>0.07 miles</td>
<td>0.36 miles</td>
<td>0.07 miles</td>
</tr>
<tr>
<td>Bicycle Facility Length</td>
<td>0.67 miles</td>
<td>0.67 miles</td>
<td>0.11 miles</td>
</tr>
<tr>
<td>Pedestrian Facility Width</td>
<td>10 FT</td>
<td>10 FT</td>
<td>6 FT</td>
</tr>
<tr>
<td>Bicycle Facility Width</td>
<td>0 - 10 FT (both sides)</td>
<td>0 - 10 FT</td>
<td>0 - 6 FT</td>
</tr>
<tr>
<td>Pedestrian Facility Surface</td>
<td>Bituminous Concrete</td>
<td>Bituminous Concrete</td>
<td>Bituminous Concrete</td>
</tr>
<tr>
<td>Bicycle Facility Surface</td>
<td>Bituminous Concrete</td>
<td>Bituminous Concrete</td>
<td>Bituminous Concrete</td>
</tr>
<tr>
<td>Terrain</td>
<td>Natural Rolling Slopes</td>
<td>Natural Rolling Slopes</td>
<td>Natural Rolling Slopes</td>
</tr>
<tr>
<td>Potential Impacts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Property Impacts</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Utility Impacts - Aerial</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Utility Impacts - Underground</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Archeological Impacts</td>
<td>No</td>
<td>Additional review recommended during design phase</td>
<td>Additional review recommended during design phase</td>
</tr>
<tr>
<td>Historic Property Impacts</td>
<td>No</td>
<td>Additional review recommended during design phase</td>
<td>Additional review recommended during design phase</td>
</tr>
<tr>
<td>Trees - Removed/Replaced</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Mailboxes - Removed/Replaced</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Right-of-Way Impacts</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Class 2 Wetland Impacts</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Permits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT 250</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>NEPA</td>
<td>Categorical Exclusion</td>
<td>Categorical Exclusion</td>
<td>Categorical Exclusion</td>
</tr>
<tr>
<td>404 COE Wetlands (<3,000 SF Impact- Category 1- Self Verification)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ANR Wetlands</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Stream Alteration</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Stormwater Discharge</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Construction General</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Archeology- Phase 1B</td>
<td>No</td>
<td>Additional review recommended during design phase</td>
<td>Additional review recommended during design phase</td>
</tr>
<tr>
<td>Section 106 / Historic</td>
<td>No</td>
<td>Additional review recommended during design phase</td>
<td>Additional review recommended during design phase</td>
</tr>
<tr>
<td>Prime Agricultural Soils</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Species</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Opinion of Probable Construction Costs

- Conceptual Cost Estimate *: $170,000
- $290,000
- $120,000

* Alternative 1 and Alternative 2 assumes a shared use path between the Kmart parcel and the raised intersection at Hannafords Drive and Fayette Drive. If Alternative B were to be used in place of the shared use path, subtract $80,000 from the cost estimate of Alternative 1 and Alternative 2 and add the cost of Alternative B. If Alternative B were to be used in conjunction with the shared use path, add the cost of Alternative B to Alternative 1 and Alternative 2.
4.0 Project Summary

4.1 Conclusion
The South Burlington, VT Pedestrian and Bicycle Feasibility Study was prepared at the request of the CCRPC and the City of South Burlington to analyze and evaluate all concept alternatives for sidewalk and shared use path connections. This report presents the existing conditions data, conceptual design alternatives, selection of the preferred conceptual design alternative, and opinion of probable construction costs for each project study area. At the conclusion of the public participation and outreach process, in which the findings of this report were presented and reviewed, the South Burlington Planning Commission approved the preferred design alternatives identified in this report and listed below:

- **Spear Street – Alternative 2** (Shared Use Path north of Swift Street and Bike Lanes south of Swift Street);
- **Hinesburg Road – Alternative 2** (Shared Use Path)
- **Allen Road/Baycrest Drive/ Harbor View Road – Alternative 1** (Bike Boulevard)
- **Fayette Drive – Alternative 2** (Shared Use Path)

The South Burlington, VT Pedestrian and Bicycle Feasibility Study is an important step in advancing a more walkable, bikeable, and vibrant community. The process which crafted this document is only the beginning and the conversation must continue to real project implementation. It is worth noting for project implementation, individual recommendations may be broken out as smaller projects separate from the entire preferred design alternative project. It’s recommended the City collaborate with the Bicycle and Pedestrian Committee to develop an action plan that identifies potential project timeframes for the recommended improvements. This may be advantageous from a development, funding, and phasing implementation perspective.

The proposed recommendations and preferred design alternatives align with the transportation goals in the South Burlington Comprehensive Plan 2016 and will continue to develop walking and bicycling infrastructure within the community.